High Order Discontinuous Galerkin Methods for Elliptic Problems on Surfaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Order Discontinuous Galerkin Methods for Second Order Elliptic Problems

Abstract. We consider DG-methods for 2nd order scalar elliptic problems using piecewise affine approximation in two or three space dimensions. We prove that both the symmetric and the nonsymmetric version of the DG-method are well-posed also without penalization of the interelement solution jumps provided boundary conditions are imposed weakly. Optimal convergence is proved for sufficiently reg...

متن کامل

Superconvergent discontinuous Galerkin methods for second-order elliptic problems

We identify discontinuous Galerkin methods for second-order elliptic problems in several space dimensions having superconvergence properties similar to those of the Raviart-Thomas and the Brezzi-Douglas-Marini mixed methods. These methods use polynomials of degree k ≥ 0 for both the potential as well as the flux. We show that the approximate flux converges in L2 with the optimal order of k + 1,...

متن کامل

Local discontinuous Galerkin methods for elliptic problems

In this paper, we review the development of local discontinuous Galerkin methods for elliptic problems. We explain the derivation of these methods and present the corresponding error estimates; we also mention how to couple them with standard conforming finite element methods. Numerical examples are displayed which confirm the theoretical results and show that the coupling works very well. Copy...

متن کامل

Discontinuous Galerkin Multiscale Methods for Elliptic Problems

Discontinuous Galerkin Multiscale Methods for Elliptic Problems Daniel Elfverson In this paper a continuous Galerkin multiscale method (CGMM) and a discontinuous Galerkin multiscale method (DGMM) are proposed, both based on the variational multiscale method for solving partial differential equations numerically. The solution is decoupled into a coarse and a fine scale contribution, where the fi...

متن کامل

Discontinuous Galerkin Methods for Elliptic problems

We provide a common framework for the understanding, comparison, and analysis of several discontinuous Galerkin methods that have been proposed for the numerical treatment of elliptic problems. This class includes the recently introduced methods of Bassi and Rebay (together with the variants proposed by Brezzi, Manzini, Marini, Pietra and Russo), the local discontinuous Galerkin methods of Cock...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Numerical Analysis

سال: 2015

ISSN: 0036-1429,1095-7170

DOI: 10.1137/140957172